Exam

23/01/2025, 8:30 am - 10:30 am

Instructions:

- Prepare your solutions in an ordered, clear and clean way. Avoid delivering solutions with scratches.
- Write your name and student number in all pages of your solutions.
- Clearly indicate each exercise and the corresponding answer. Provide your solutions with as much detail as possible.
- You are allowed to use one and only one A4 cheat sheet.

Exercise 1: Consider the function on \mathbb{R}^3 defined by

$$f\left(x,y,z
ight) = egin{cases} rac{xyz}{x^4 + y^4 + z^4} & ext{if } (x,y,z)
eq (0,0,0) \ 0 & ext{if } (x,y,z) = (0,0,0) \,. \end{cases}$$

- (a) (1 point) Show that all partial derivatives exist everywhere
- (b) (1 point) Where is f differentiable? (justify your answer sufficiently)
- (c) (0.5 points) Is f continuous at the origin? (justify your answer sufficiently)

Exercise 2: (1 point) Does the system of equations

$$egin{cases} x+y+\sin(xy) &= a \ \sin\left(x^2+y
ight) &= 2a \end{cases}$$

have a solution for sufficiently small a? (justify your answer sufficiently)

Exercise 3: (1 point) Let A be the region in \mathbb{R}^2 bounded by $\{x=0\}, \{y=0\}, \text{ and } \{x+y=2\}$. Compute $\int_{\mathbb{R}^2} xy^2 dx dy$.

Exercise 4: Consider the torus in \mathbb{R}^3 defined parametrically as

$$\phi(u,v) = ig((2+\cos v)\cos u, (2+\cos v)\sin u, \sin vig), \quad u,v\in [0,2\pi].$$

- (a) (1.5 points) Is the given parametrization orientation-preserving if the torus is oriented by the outward normal
- (b) (1.5 points) Evaluate the surface integral of the 2-form $\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ over the torus.

Exercise 5: A vector field \vec{F} is called conservative if there exists a scalar potential function $\phi(x,y,z)$ such that $\vec{F} = \nabla \phi$.

- (a) (0.5 points) Let $\vec{F}(x,y,z) = (yz,xz,xy)$ be a vector field defined on \mathbb{R}^3 . Is \vec{F} conservative?
- (b) (0.5 points) Let $\vec{F}(x,y,z) = (yz,xz,xy)$ be a vector field defined on $\mathbb{R}^3 \setminus \{0\}$. Is \vec{F} conservative?

Exercise 6: (1.5 points) Let A be a region in the first octant $x, y, z \ge 0$, where $z \le 4$ and $x^2 + y^2 \le 4$. Let S be the boundary of A, oriented by the outward-pointing normal. What is the flux of $\vec{F}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x+yz \\ y+xz \\ z+xy \end{bmatrix}$ across S?

Bonus questions:

Exercise 7: (1 point) Let \vec{F} be the vector field $\vec{F}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} F_1(x,y) \\ F_2(x,y) \\ 0 \end{bmatrix}$, where F_1 and F_2 are defined on all of \mathbb{R}^2 .

Find conditions on F_1 and F_2 that guarantee that there exists a function $f:\mathbb{R}^3\to\mathbb{R}$ such that $\vec{F}=\nabla f$.

Exercise 8: (1 point) Let C be the curve in the (x, y) plane given by the polar equation $r^2 = 2\cos(2\theta)$. Orient this curve by increasing θ and integrate over the curve the 1-form $\frac{-y\mathrm{d}x + (x+1)\mathrm{d}y}{(x+1)^2 + y^2} + \frac{-(y+1)\mathrm{d}x + x\mathrm{d}y}{x^2 + (y+1)^2}$.